Observability Best Practices
Using Prometheus for production-scale monitoring
The recommended approach for production-scale monitoring of Istio meshes with Prometheus is to use hierarchical federation in combination with a collection of recording rules.
In default deployments of Istio, a deployment of Prometheus is
provided for collecting metrics generated for all mesh traffic. This deployment of
Prometheus is intentionally deployed with a very short retention window (6 hours). The
default Prometheus deployment is also configured to collect metrics from each Envoy proxy
running in the mesh, augmenting each metric with a set of labels about their origin (instance
,
pod_name
, and namespace
).
While the default configuration is well-suited for small clusters and monitoring for short time horizons, it is not suitable for large-scale meshes or monitoring over a period of days or weeks. In particular, the introduced labels can increase metrics cardinality, requiring a large amount of storage. And, when trying to identify trends and differences in traffic over time, access to historical data can be paramount.
Workload-level aggregation via recording rules
In order to aggregate metrics across instances and pods, update the default Prometheus configuration with the following recording rules:
groups:
- name: "istio.recording-rules"
interval: 5s
rules:
- record: "workload:istio_requests_total"
expr: |
sum without(instance, namespace, pod_name) (istio_requests_total)
- record: "workload:istio_request_duration_milliseconds_count"
expr: |
sum without(instance, namespace, pod_name) (istio_request_duration_milliseconds_count)
- record: "workload:istio_request_duration_milliseconds_sum"
expr: |
sum without(instance, namespace, pod_name) (istio_request_duration_milliseconds_sum)
- record: "workload:istio_request_duration_milliseconds_bucket"
expr: |
sum without(instance, namespace, pod_name) (istio_request_duration_milliseconds_bucket)
- record: "workload:istio_request_bytes_count"
expr: |
sum without(instance, namespace, pod_name) (istio_request_bytes_count)
- record: "workload:istio_request_bytes_sum"
expr: |
sum without(instance, namespace, pod_name) (istio_request_bytes_sum)
- record: "workload:istio_request_bytes_bucket"
expr: |
sum without(instance, namespace, pod_name) (istio_request_bytes_bucket)
- record: "workload:istio_response_bytes_count"
expr: |
sum without(instance, namespace, pod_name) (istio_response_bytes_count)
- record: "workload:istio_response_bytes_sum"
expr: |
sum without(instance, namespace, pod_name) (istio_response_bytes_sum)
- record: "workload:istio_response_bytes_bucket"
expr: |
sum without(instance, namespace, pod_name) (istio_response_bytes_bucket)
- record: "workload:istio_tcp_connections_opened_total"
expr: |
sum without(instance, namespace, pod_name) (istio_tcp_connections_opened_total)
- record: "workload:istio_tcp_connections_closed_total"
expr: |
sum without(instance, namespace, pod_name) (istio_tcp_connections_opened_total)
- record: "workload:istio_tcp_sent_bytes_total_count"
expr: |
sum without(instance, namespace, pod_name) (istio_tcp_sent_bytes_total_count)
- record: "workload:istio_tcp_sent_bytes_total_sum"
expr: |
sum without(instance, namespace, pod_name) (istio_tcp_sent_bytes_total_sum)
- record: "workload:istio_tcp_sent_bytes_total_bucket"
expr: |
sum without(instance, namespace, pod_name) (istio_tcp_sent_bytes_total_bucket)
- record: "workload:istio_tcp_received_bytes_total_count"
expr: |
sum without(instance, namespace, pod_name) (istio_tcp_received_bytes_total_count)
- record: "workload:istio_tcp_received_bytes_total_sum"
expr: |
sum without(instance, namespace, pod_name) (istio_tcp_received_bytes_total_sum)
- record: "workload:istio_tcp_received_bytes_total_bucket"
expr: |
sum without(instance, namespace, pod_name) (istio_tcp_received_bytes_total_bucket)
Federation using workload-level aggregated metrics
To establish Prometheus federation, modify the configuration of your production-ready deployment of Prometheus to scrape the federation endpoint of the Istio Prometheus.
Add the following job to your configuration:
- job_name: 'istio-prometheus'
honor_labels: true
metrics_path: '/federate'
kubernetes_sd_configs:
- role: pod
namespaces:
names: ['istio-system']
metric_relabel_configs:
- source_labels: [__name__]
regex: 'workload:(.*)'
target_label: __name__
action: replace
params:
'match[]':
- '{__name__=~"workload:(.*)"}'
- '{__name__=~"pilot(.*)"}'
If you are using the Prometheus Operator, use the following configuration instead:
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: istio-federation
labels:
app.kubernetes.io/name: istio-prometheus
spec:
namespaceSelector:
matchNames:
- istio-system
selector:
matchLabels:
app: prometheus
endpoints:
- interval: 30s
scrapeTimeout: 30s
params:
'match[]':
- '{__name__=~"workload:(.*)"}'
- '{__name__=~"pilot(.*)"}'
path: /federate
targetPort: 9090
honorLabels: true
metricRelabelings:
- sourceLabels: ["__name__"]
regex: 'workload:(.*)'
targetLabel: "__name__"
action: replace
Optimizing metrics collection with recording rules
Beyond just using recording rules to aggregate over pods and instances, you may want to use recording rules to generate aggregated metrics tailored specifically to your existing dashboards and alerts. Optimizing your collection in this manner can result in large savings in resource consumption in your production instance of Prometheus, in addition to faster query performance.
For example, imagine a custom monitoring dashboard that used the following Prometheus queries:
Total rate of requests averaged over the past minute by destination service name and namespace
sum(irate(istio_requests_total{reporter="source"}[1m])) by ( destination_canonical_service, destination_workload_namespace )
P95 client latency averaged over the past minute by source and destination service names and namespace
histogram_quantile(0.95, sum(irate(istio_request_duration_milliseconds_bucket{reporter="source"}[1m])) by ( destination_canonical_service, destination_workload_namespace, source_canonical_service, source_workload_namespace, le ) )
The following set of recording rules could be added to the Istio Prometheus configuration, using the istio
prefix
to make identifying these metrics for federation simple.
groups:
- name: "istio.recording-rules"
interval: 5s
rules:
- record: "istio:istio_requests:by_destination_service:rate1m"
expr: |
sum(irate(istio_requests_total{reporter="destination"}[1m]))
by (
destination_canonical_service,
destination_workload_namespace
)
- record: "istio:istio_request_duration_milliseconds_bucket:p95:rate1m"
expr: |
histogram_quantile(0.95,
sum(irate(istio_request_duration_milliseconds_bucket{reporter="source"}[1m]))
by (
destination_canonical_service,
destination_workload_namespace,
source_canonical_service,
source_workload_namespace,
le
)
)
The production instance of Prometheus would then be updated to federate from the Istio instance with:
match clause of
{__name__=~"istio:(.*)"}
metric relabeling config with:
regex: "istio:(.*)"
The original queries would then be replaced with:
istio_requests:by_destination_service:rate1m
avg(istio_request_duration_milliseconds_bucket:p95:rate1m)